Este trabajo, desarrollado a partir del estudio del volcán de La Palma, se basa en la evolución de la presión del magma para determinar el final del proceso eruptivo

Jueves, 30 Mayo, 2024

Investigadores del Consejo Superior de Investigaciones Científicas (CSIC) han liderado un estudio, desarrollado en torno al volcán de La Palma, cuyos resultados prometen suponer un avance en el pronóstico de erupciones volcánicas. Empleando un método basado en el análisis del cambio de forma que experimentó la isla durante la erupción, los científicos fueron capaces de estimar su duración unos 42 días antes del cese de la actividad volcánica. En la metodología y las implicaciones de este trabajo, publicadas en la prestigiosa revista Geophysical Research Letters, han participado miembros de la Universidad Politécnica de Madrid (UPM) y del Instituto Geográfico Nacional (IGN).

Volcán de La Palma en erupción. / César Hernández Regal (CSIC)

El trabajo ha constatado la importancia de una correcta interpretación de los datos obtenidos en tiempo real mediante las redes de vigilancia volcánica. Estas redes instrumentales pueden controlar cambios minúsculos de la forma del terreno con un elevado nivel de precisión, inferior incluso al centímetro, lo que proporciona información clave para comprender la evolución del sistema de alimentación de una erupción. En este sentido, en el caso de La Palma, la buena configuración de la red de estaciones del Sistema de Navegación Global por Satélite (GNSS) desplegada en la isla por el IGN permitió obtener una serie temporal excepcional que, unida a la conceptualización y modelado realizado por el CSIC y la UPM, detectó cómo la presión del magma fue disminuyendo a medida que transcurría la erupción.

“El modelado del proceso de ralentizamiento de la contracción del volcán, que fuimos calibrando durante la erupción, nos permitió estimar el final de la deformación lo que, siguiendo unas hipótesis bastante básicas sobre la física de los volcanes, coincidiría con el fin de la erupción” señala Pablo J. González, investigador del grupo de volcanología del Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) de Tenerife.

La hipótesis principal del trabajo consideró que el sistema de alimentación del volcán estaba cerrado, es decir, la dinámica de la erupción respondía a una simple evacuación de fluidos de una cámara magmática, en la que no había nuevas entradas de magma localizadas a una mayor profundidad. “El análisis a posteriori del proceso de ralentización de la deformación permitió corroborar que esta estabilización se producía 38-40 días antes del final de la erupción. Este análisis y la comprobación de que la velocidad de ralentización y del volumen de las lavas emitidas por el volcán coincidía, indicaba que la masa del sistema de alimentación no había aumentado durante la erupción” explica María Charco, investigadora del Instituto de Geociencias (IGEO, CSIC-UCM) de Madrid.

De las conclusiones del estudio se desprenden ciertos parámetros importantes para estudios futuros como la proporción existente entre la pérdida de presión en el momento de cese de la erupción y la sobrepresión a su inicio. Este valor porcentual puede ser útil a la hora de realizar pronósticos sobre la duración de futuras erupciones en La Palma y en un mayor número de volcanes de otras zonas del planeta.

El pronóstico de erupciones volcánicas, una asignatura pendiente

Actualmente, el pronóstico de erupciones volcánicas es uno de los grandes retos científicos de la volcanología moderna, puesto que no se dispone de conocimiento ni herramientas precisas con las que prever cambios de comportamiento futuros. Aunque se han hecho grandes avances para anticipar el comienzo de las erupciones a partir de observaciones de sismicidad y deformación del terreno, no se ha experimentado tanto progreso en otro tipo de pronósticos como, por ejemplo, la duración total del proceso. Conocer ese dato con anticipación es clave en erupciones efusivas como la de La Palma, puesto que los flujos de lava representan uno de los principales peligros geológicos. Saber durante cuánto tiempo son alimentadas las corrientes lávicas permitiría conocer con antelación hasta donde podrían avanzar y, por tanto, ser más efectivos en la mitigación de sus riesgos.

Referencia científica:

Charco, M., González, P.J., García-Pallero, J.L., García-Cañada, L., del Fresno, C. and Rodríguez-Ortega, A. (2024) The2021 La Palma (Canary Islands) eruption ending forecast through magma pressure drop, Geophys. Res. Lett. DOI: https://doi.org/10.1029/2023GL106885

CSIC Comunicación

comunicacion@csic.es

Material de descarga

Deja un comentario